“[We] cannot find out the use of steam engines, until comes steam-engine-time. ” Charles Fort

Charles Fort was an extraordinary thinker and a witty if challenging writer. Born into the heart of the steam-driven industrial revolution, He was nonplussed to learn about the Aeolipile, an ancient Roman steam engine. It was a very simple device and researchers aren’t certain if it was an entertaining party trick or had some small practical use. We do know that its impact on this historical period is zero. It didn’t capture the imagination of the time or generate new ideas and new technologies. It was intellectually inert.

What then makes a technological breakthrough roar into life seemingly from nowhere? Why do paradigm shifts sometimes appear startlingly fast?

“Steam engine time” may sound too techno-mystical to be an idea of practical use but I think the meaning is straightforward. Steam engine time (or gunpowder time or antibiotic time) is an EMERGENT effect of the laying down sufficient essential substrate to make the idea fertile. That substrate collects slowly and incrementally. It consists of underlying 1. technological and 2. intellectual readiness.

  1. The sort of hardware needed to express the idea physically must be “off the shelf” accessible. Not like Superstore accessible but in the general world of the moment and probably serving completely unrelated purposes at present. If you have to invent a bunch of other things to compile and test your idea, it isn’t time yet.
  2. There must be a sort of slowly heating or charging excitement growing in the community of innovators and thinkers. They may keep their thoughts to themselves but related ideas are percolating and making connections throughout the surrounding world. The questions are crystallizing and there is a growing sense of urgency. Competition plays a part too. Pride and fear add to the pressure. This process speeds up when more people are engaging with the issue.

If you’ve read my stuff on Darwin and Wallace you know of their representative competition but the IDEA of evolution was on a low boil everywhere in their cultural moment. The substrate was laid and the moment was fertile. Their theories (and others) could only emerge in a powerful way that shaped the future from this state of readiness. A breakthrough theory coming before the substrate is ripe and ready is roundly ignored.

Feuding Dutchmen, and Telescope Time

With the Renaissance came a new freedom of thought and hunger for knowledge. Ptolemaic knowledge of astronomy was rediscovered and published along with mythology, astrology, and philosophy. Our place in the universe was one of the ideas beginning to bubble in many minds. Technology and craftsmanship rose from the old, rediscovered knowledge and quickly had a practical impact. It was inevitable that as glassmaking and lens-grinding techniques improved in the late 1500s, someone would hold up two lenses and observe what they could do.

The first patent application for a telescope came from Dutch eyeglass maker Hans Lippershey. In 1608, Lippershey claimed he’d invented a device that could magnify objects three times. His telescope had a concave eyepiece aligned with an objective convex lens. Another eyeglass maker, Zacharias Jansen, claimed Lippershey had stolen the idea from him. Jansen and Lippershey lived in the same town and both worked on making optical instruments.

We have no evidence that Lippershey did not develop his telescope independently therefore, he gets the credit for the telescope, because of the patent application, while Jansen is credited with inventing the compound microscope. Both appear somehow to have been a part of the development of both instruments.

This is an extraordinary impact on science and the future from one little Dutch town and two very competitive residents. Our exploration of the very big and far and the very small and close comes to us courtesy of this jealous, grumpy lens grinding soap opera. Continue reading